VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VII-Semester Main & Backlog Examinations, Dec.-23/Jan.-24 Power System Operation and Control (PE-II)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Draw the flowchart for Economic Load Dispatch (ELD) problem without considering transmission losses?	2	2	1	1,2,3,12
2.	A power system has plants supplying P_1 =125MW and P_2 = 250MW. The loss coefficients in MW ⁻¹ are B_{11} =0.001, B_{22} =0.0013 and B_{12} = -0.0001. Evaluate the penalty factor of plant-1?	2	3	1	1,2,3,12
3.	Explain in brief about Unit commitment problem in power system?	2	2	2	1,2,3,12
4.	Discuss the importance of spinning reserve in power system?	2	3	2	1,.2,3,12
5.	Draw the block diagram of a single area load frequency control model with integral controller?	2	1	3	1,2,3,12
6.	Sketch the droop characteristics of an alternator?	2	1	3	1,2,3,12
7.	Draw the power angle curve indicating the accelerating and	2	2	4	1,2,3,12
	decelerating areas for a 3-phase fault at the middle of the line as shown in the figure below?				
Service A	Generator Infinite bus				
8.	List out the methods of transient stability improvement?	2	1,	4	1,2,3,12
9.	Discuss in brief about tap changing transformer for voltage control?	2	1	5	1,2,3,12
10.	Explain disadvantages of low power factor in power system?	2	2	5	1,2,3,12
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Explain the step-by-step algorithm for Economic Load Dispatch problem considering transmission losses?	4	1	1	1,2,3,12
b)	The fuel inputs per hour of plant 1,2 and 3 are given as	4	3	1	1,2,3,12
	$F_1 = (0.006 P_1^2 + 5.5 P_1 + 400) Rs/Hr$				
	$F_2 = (0.004P_2^2 + 5.3P_2 + 500) \text{ Rs/Hr}$				
	$F_3 = (0.009 P_3^2 + 5.8P_3 + 200) Rs/Hr$				
	Neglecting transmission losses in the system, determine the economic operating schedule and the corresponding cost of generation, if the demand is 975MW. Assume no limits of power generation of each unit?		ida Naga		

	Unit	Loadin	g Limits	Fuel	cost coefficien	40	4	3	2	1,2,3,12
	No		(W)	ruel	cost coefficien	LS				
	377	P _{min}	P _{max}	a _i (Rs/ MW ² Hr)	b _i (Rs/MWHr)	c _i (Rs/Hr)				
	1	100	400	0.006	7	600				
	2	50	300	0.01	8	400				
	3	150	500	0.008	6	500	los en			
	If the los	ad on the as per pri	system is fority list n	600MW, who	ich are the unit commitment?	s to be in	15.33			
b)	In a uni follow, p	t commit	ment prob	olem, illustrate a a unit?	e the necessary	steps to	4	1	2	1,2,3,12
. a)	sketch, d	the operation the operation its gram modern	mathemati	ical speed gov ical model an	erning system vad represent the	with a neat e same in	4	2	3	1,2,3,12
b)	with a dreis 50Hz	oop of 5% at no load	and 4% re l. How a l	spectively. Th	V are operating to frequency of the shared between two shared between two scondition?	the system	4	3	3	1,2,3,12
l. a)	Derive the fault on rebelow?	ne express niddle of	sion for crone of the	itical clearing transmission l	angle for a thine, for the system	ree phase em shown	4	2	4	1,2,3,12
	$\overrightarrow{P_m}$	#()	-0-			finite bus ' ∠0°				
b)	Define stability f	eady state or a gener	stability? lator conne	Determine the cted to infinite	condition for st bus?	eady state	4	2	4	1,2,3,12
. a)	Explain to		apacitor m	nethod of pow	er factor impro	vement in	4	2	5	1,2,3,12
b)	A capacit	or is conr ging. Dete	nected acro	ss the load ar	ver factor of 0.7 and power factor g of the capaci	raised to	4	3	5	1,2,3,12
. a)	The transi			-0.001 1 0.02 2 -0.003	as below in per -0.002 -0.003 0.03	unit(pu)	4	3	1	1,2,3,12
	$P_{G3} = 3p$	u. Calcula	te the tran	smission loss	= $1pu$, P_{G2} = in pu and the int-1, plant-2 and	cremental	Agen V (see)			

_					
b)	Using Dynamic programming method, illustrate the minimum cost required to reach from Source (0) to destination (7). Assume $P_i(k) = 0$, \forall i, k., where i and k refers to state and stage respectively. $P_i(k)$ refers to self-cost at each stage. The number on the line represents cost in rupees to travel from one state to other state. Assume the data wherever required suitably and specify the same?	4	3	2	1,2,3,12
	1 4 4 18 0 2 2 5 5 13 7 5 16 2				
17.	Answer any <i>two</i> of the following:				
a)	Show that the static error in frequency can be reduced to zero for an isolated single area load frequency control problem with integral controller?	4	2	3	1,2,3,12
b)	Determine the critical clearing angle for the system shown below, when a three-phase fault occurs at the point P. The breakers 1 and 2 open simultaneously for clearing the fault. The reactance values of various components are indicated on the diagram. The generator is delivering 1.0pu power at the instant preceding the fault.	4	3	4	1,2,3,12
	j0.25 $j0.05$ $j0.05$ $j0.05$ $j0.05$ $ Simple First State of the position of the position$				
c)	Explain the operation of TCSC with a neat sketch? Draw its characteristics?	4	2	5	1,2,3,12

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
